Tuesday, March 3, 2009


A generalization of a voxel is the doxel, or dynamic voxel. This is used in the case of a 4D dataset, for example, an image sequence that represents 3D space together with another dimension such as time. In this way, an image could contain 100×100×100×100 doxels, which could be seen as a series of 100 frames of a 100×100×100 volume image. Although storage and manipulation of such data uses a lot of computer memory, this allows the study of spacetime systems.

There is a discussion over at Backreaction called, Conservative solutions to the black hole information problem It deals with a paper her and Lee Smolin wrote together.

Conservative solutions to the black hole information problem
By Sabine Hossenfelder and Lee Smolin
arXiv: 0901.3156,
Submitted on 20 Jan 2009) Abstract: We review the different options for resolution of the black hole loss of information problem. We classify them first into radical options, which require a quantum theory of gravity which has large deviations from semi-classical physics on macroscopic scales, such as non-locality or endowing horizons with special properties not seen in the semi-classical approximation, and conservative options, which do not need such help. Among the conservative options, we argue that restoring unitary evolution relies on elimination of singularities. We argue that this should hold also in the AdS/CFT correspondence.

It is important that one is set up in terms of progressing to the determination and explanation of the voxel in the context that Holography. Susskind uses it in the way one can interpret "the bit" of information.

A picture, a photograph, or a painting is not the real world that it depicts. It's flat, not full with three dimensional depth like the real thing. Look at it from the side-almost edge on. It doesn't look anything like the real scene view from a angle. In short it's two dimensional while the world is three dimensional. The artist, using perceptual sleight of hand, has conned you into producing a three dimensional image in your brain, but in fact the information just isn't there to form a three dimensional model of the scene. There is no way to tell if that figure is a distant giant or a close midget There is no way to tell if the figure is made of plaster or if it's filled with blood or guts. The brain is providing information that is not really present in the painted strokes on the canvas or the darken grains of silver on the photographic surface. The Cosmic Landscape by Leonard Susskind, page 337 and 338

No comments: